当前位置:首页 > 推荐 > 十大排行榜 > 正文

地球三大生态系统,实现低碳经济的物质基础是(地球上的生态系统都有哪些)

摘要: 地球的三大生态系统是______、______和______生态系统 生物圈是由生物和环境组成的统一整体,是最大的生态系统...

地球的三大生态系统是______、______和______生态系统

生物圈是由生物和环境组成的统一整体,是最大的生态系统。它包括地球上所有的生物及其生存环境。它为生物提供了基本条件,如营养物质、阳光、空气、水、适宜的温度和一定的生存空间。它适合生物生存。它包括大气层的底部、大部分水圈和岩石圈的表面。可分为土地、湿地、大气三大生态系统。湿地;空气

地球的三大生态系统是______、______和______生态系统

地球上的三大生态系统?

地球生态系统的组成和功能。生态系统的概念在自然界中,任何生物群落都与其自然环境有着千丝万缕的联系,并通过不断的能量物质交换而相互作用,共同形成一个统一的整体。这样的生态功能单元就是生态系统。根据以上对生态系统的定义,我们可以从类型上来理解它,如森林、草原、沙漠、苔原、沼泽、河流、海洋、湖泊、农田和城市等。也可以区域性理解。例如,有森林、灌木、草地和溪流的山区或有农田、种植园、草地、河流、池塘、村庄和城镇的平原地区都是生态系统。生态系统是地球表层的基本单位,大小差异很大。从整个生物圈到一滴水及其微生物,都可以看作是一个生态系统。所以,整个地球表面镶嵌着大大小小不同的生态系统。生态系统作为一个开放的系统,并不是完全被动地接受环境的影响。正常情况下,在一定限度内,它具有反馈功能,使其能够自动调节,逐步修复和调整外界干扰造成的损伤,维持正常的结构和功能,维持自身的相对平衡。因此,它也是一个控制系统或反馈系统。生态系统的概念把我们对生命和自然的认识提高到了一个更高的层次。它的研究为我们观察和分析复杂的自然提供了强有力的手段,成为解决现代人类面临的环境污染、人口增长、自然资源利用和保护等重大问题的理论基础之一。2.生态系统的组成任何生态系统都可以分为两部分:无生命物质——无机环境和有生命物质——生物群落(图10-6)。无机环境包括太阳辐射能作为系统的能源;温度、水分、空气、岩石、土壤和各种营养元素等物理化学环境条件;以及CO2、H2O、O2、N2、无机盐等生物质代谢的原料,构成生物生长发育的能量和物质基础,也称生命支持系统。群落是生态系统的核心,可分为三组:第一组是自养生物,包括各种绿色植物和化能合成细菌,称为生产者。绿色植物可以通过光合作用将吸收的水分、CO2和无机盐转化为初级产物——碳水化合物,并进一步合成脂肪和蛋白质等。用来建造自己。这样,太阳能就可以通过生产者的合成和转化不断进入生态系统,成为其他生物群体唯一的食物和能量来源。会合成的细菌也能把无机物合成有机物,但它们利用的能量不是来自太阳,而是来自某些物质发生化学变化时产生的能量。例如,硝化细菌可以将氨(NH3)氧化成亚硝酸和硝酸,并利用这种氧化过程中释放的能量将CO2水合为有机物。第二类是异养生物,包括食草动物和食肉动物,称为消费者。顾名思义,这些消费者不能直接利用太阳能生产食物,只能通过直接或间接以绿色植物为食来获取能量。根据取食状态不同,可分为直接依赖植物的枝、叶、果实、种子和凋落物的一级消费者,如蝗虫、兔、鹿、牛、马、羊等草食动物。以食草动物为食的食肉动物为二级消费者,如黄鼠狼、狐狸、青蛙等。食肉动物之间存在一种掠夺关系,其中强者成为第三、第四等级的消费者。这些高级消费者是生物界最凶猛的食肉动物,比如水域中的狮子、老虎、老鹰和鲨鱼。有些动物既吃植物又吃动物,称为杂食动物,比如一些鸟和鱼。第三类是异养微生物,如细菌、真菌、土壤原生动物和一些小型无脊椎动物。他们靠分解动植物残渣为生,这些残渣被称为分解者。

微生物分布广泛,土壤和水的表层含量丰富,空气中含量较少,多为腐生菌和霉菌。它是生物群落中最大的一群微生物。据估计,1克肥沃的土壤中有108种微生物。细菌和真菌主要靠吸收动植物残体中的可溶性有机物生存。在消化过程中,无机营养物质从有机物中释放出来,并返回到环境中。可见,微生物在生态系统中起着循环营养物质的作用。土壤中的小型无脊椎动物,如线虫、蚯蚓等。粉碎植物残体,在微生物的作用下,起到加速有机物分解转化的作用。此外,这些土壤动物还能在体内分解,将有机物转化为无机盐,供植物再次吸收利用(图10-6)。3.生态系统的营养结构生态系统的营养结构是指生态系统中无机环境与生物群落之间以及生产者、消费者和分解者之间通过营养或食物传递而形成的一种组织形式,是生态系统最本质的结构特征。生态系统各组成部分之间的营养联系是通过食物链和食物网实现的。它是食物链中不同生物之间的链状食物依赖关系,食物链中的每一个环节都称为营养级。每个生物种群都处于某个营养级,少数物种同时处于两个营养级,如杂食动物。生态系统中的食物链包括两种主要类型:活体食物链和腐烂食物链。生命食物链始于绿色植物固定太阳能并产生有机物质。它们属于第一营养级,食草动物属于第二营养级,各种食肉动物构成第三、第四及更高营养级。腐生食物链从生物的残体开始,被土壤动物碾压分解。

细菌、真菌的分解与转化,以无机物的形式归还给环境,供绿色植物再次吸收。从营养级来划分,分解者处于第五或更高的营养级。老鼠以谷物为食,鼬鼠以老鼠为食,鹰又以鼬鼠为食,鹰死后的残体被各种微生物分解成无机物质,便是简单食物链的一个例子。然而,自然界中的食物链并不是孤立存在的,一个易于理解的事实是,几乎没有一种消费者是专以某一种植物或动物为食的,也没有一种植物或动物只是某一种消费者的食物,如老鼠吃各种谷物和种子,而谷物又是多种鸟类和昆虫的食物,昆虫被青蛙吃掉,青蛙又是蛇的食物,蛇最终被鹰捕获为食;谷物的秸杆还是牛的食物,牛肉又成为人类的食物(图10-7)。可见,食物链往往是相互交叉的,形成复杂的摄食关系网,称为食物网。一般来说,一个生态系统的食物网结构愈复杂,该系统的稳定性程度愈大。 4.生态系统的功能 生态系统的功能主要表现为生物生产、能量流动和物质循环,它们是通过生态系统的核心部分——生物群落来实现的。 (1)生态系统的生物生产 生态系统的生物生产是指生物有机体在能量和物质代谢的过程中,将能量、物质重新组合,形成新的产物(碳水化合物、脂肪、蛋白质等)的过程。绿色植物通过光合作用,吸收和固定太阳能,将无机物转化成有机物的生产过程称为植物性生产或初级生产;消费者利用初级生产的产品进行新陈代谢,经过同化作用形成异养生物自身物质的生产过程称为动物性生产或次级生产。 植物在单位面积、单位时间内,通过光合作用固定的太阳能量称为总初级生产量(GPP),单位是J·m-2·a-1或 g DW·m-2·a-1(DW为干重)。总初级生产量减去植物因呼吸作用的消耗(R),剩下的有机物质即为净初级生产量(NPP)。它们之间的关系为 NPP=GPP-R 与初级生产量相关的另一个概念是生物量,对于植物来说,它是指单位面积内植物的总重量,单位是km·m-2。某一时间的植物生物量就是在此时间以前所积累的初级生产量。 据估计,整个地球净初级生产量(干物质)为172.5×109t·a-1,生物量(干物质)为1841×109t,不同生态系统类型的生产量和生物量差别显著(表10-1)。应当指出,这种估计是非常粗略的,但对于了解全球生态系统初级生产量和生物量的大体数量特征,仍有一定的参考价值。 单位地面上植物光合作用累积的有机物质中所含的能量与照射在同一地面上日光能量的比率称为光能利用率。绿色植物的光能利用率平均为0.14%,在运用现代化耕作技术的农田生态系统的光能利用率也只有1.3%左右。地球生态系统就是依靠如此低的光能利用率生产的有机物质维持着动物界和人类的生存。 (2)生态系统的能量流动 生态系统的生物生产是从绿色植物固定太阳能开始的,太阳能通过植物的光合作用被转变为生物化学能,成为生态系统中可利用的基本能源。生态系统各成分之间能量流动的一个重要特点是单向流,表现为能量的很大部分被各营养级的生物所利用,通过呼吸作用以热的形式散失,而这些散失到环境中的热能不能再回到生态系统中参与能量的流动,因为尚未发现以热能作为能源合成有机物的生物体,而用于形成较高营养级生产量的能量所占比例却很小(图10-8)。 生态系统内的能量传递和转化遵循热力学定律。根据热力学第一定律,输入生态系统的能量总是与生物有机体贮存、转换的能量和释放的热量相等,从而保持生态系统内及其环境中的总能量值不变。根据热力学第二定律,生态系统的能量随时都在进行转化和传递,当一种形式的能量转化成另一种形式的能量时,总有一部分能量以热能的形式消耗掉,这样,系统的熵便呈增加的趋势。对于一个热力学非平衡的孤立系统来说,它的熵总是自发地趋于增大,从而使系统的有序程度越来越低,最后达到无序的混乱状态,即热力学平衡态。然而,地球生态系统所经历的却是一个与热力学第二定律相反的发展过程,即从简单到复杂,从无序到有序的进化过程。根据非平衡态热力学的观点,一个远离平衡态的开放系统,可以通过从环境中引入负熵流,以抵消系统内部所产生的熵增加,使系统从无序向有序转化。生态系统是一个生物群落与其环境之间既进行能量交换,又进行物质交换的开放系统,通过能量和物质的输入,生态系统不断“吃进”负熵流,维持着一种高度有序的状态。 如前所述,每经过一个营养级,都有大量的能量损失掉。那么,生态系统能量转化的效率究竟有多大呢?美国学者Lindeman测定了湖泊生态系统的能量转化效率,得出平均为10%的结果,即在能量从一个营养级流向另一个营养级的过程中,大约有90%的损失量,这就是著名的“十分之一定律”(图10-9)。比如,一个人若靠吃水产品增加0.5kg的体重,就得食用5kg的鱼,这5kg的鱼要以50kg的浮游动物为食,而50kg的浮游动物则需消耗约500kg的浮游植物。由于这一“定律”得自对天然湖泊的研究,所以比较符合水域生态系统的情况,并不适用于陆地生态系统。一般来讲,陆地生态系统的能量转化效率要比水域生态系统低,因为陆地上的净生产量只有很少部分能够传递到上一个营养级,大部分则直接被传递给了分解者。 (3)生态系统的物质循环 生态系统的发展和变化除了需要一定的能量输入之外,实质上包含着作为能量载体的各种物质运动。例如,当绿色植物通过光合作用,将太阳能以化学能的形式贮存在合成的有机物质之中时,能量和物质的运动就同时并存。自然界的各种元素和化合物在生态系统中的运动为一种循环式的流动,称为生物地球化学循环。 参与有机体生命过程的化学元素大约有30~40种,根据它们在生命过程中的作用可以分为三类: ·能量元素,包括碳(C)、氢(H)、氧(O)、氮(N),它们是构成蛋白质的基本元素和生命过程必需的元素; ·大量元素,包括钙(Ca)、镁(Mg)、磷(P)、钾(K)、硫(S)、钠(Na)等,它们是生命过程大量需要的元素; ·微量元素,包括铜(Cu)、锌(Zn)、硼(B)、锰(Mn)、钼(Mo)、钴(Co)、铁(Fe)、铝(Al)、铬(Cr)、氟(F)、碘(I)、溴(Br)、硒(Se)、硅(Si)、锶(Sr)、钛(Ti)、钒(V)、锡(Sn)、镓(Ga)等,它们尽管含量甚微,但却是生命过程中不可缺少的元素。 这些化学元素统称为生物性元素,无论缺少哪一种,生命过程都可能停止或产生异常。例如碳水化合物是由水和CO2经光合作用形成的,但光合作用过程中还必须有氮、磷以及微量元素锌、钼等参加反应,同时还必须在酶的活性下进行,而酶本身又包括多种微量元素。 在自然环境中,每一种化学元素都存在于一个或多个贮存库中,元素在环境贮存库中的数量通常大大超过其结合在生命体贮存库中的数量。例如,大气圈和生物圈分别是氮元素的贮存库,且在大气圈中氮的数量远远大于在生物圈中的数量。元素在“库”与“库”之间的移动便形成物质的流动。为了衡量生态系统中营养物质的周转状况,引入周转率和周转时间的概念。周转率指单位时间内出入一个贮存库的营养物质流通量占库存营养物质总量的比例;周转时间是周转率的倒数,指移动贮存库中全部营养物质所需的时间。可见,周转率愈大,周转时间愈短。例如,大气圈中氮的周转时间约为100万年,海洋中硅的周转时间约为8000年。在自然生物地球化学循环中,某种物质输入和输出各贮存库的数量应当处于大体平衡状态,使该物质在各贮存库内的存量保持基本恒定。如果一个贮存库的某种物质输入与输出失衡,使其存量增加或减少,必将会对整个生态系统的功能产生一系列难以预料的影响。由于人类燃烧化石燃料和砍伐森林,导致的大气贮存库中CO2浓度的增加、温室效应加剧和对流层气温升高,便是一个显著的例子。 根据属性的不同,生物地球化学循环可分为三种主要类型:水循环,气体型循环和沉积型循环。因为水循环和沉积型循环已分别在其他章节中涉及,本节只介绍气体型循环的内容。 气体型循环主要包括碳和氮的循环,这两个元素的贮存库主要是大气和海洋。循环具全球性。 碳循环 碳是构成有机体的基本元素,占生活物质总量的25%。在无机环境中,碳主要以CO2或者碳酸盐的形式存在。生态系统中的碳循环基本上是伴随着光合作用和能量流动过程进行的。在有阳光的条件下,植物把大气中的CO2转化为碳水化合物,用以构成自身。同时,植物通过呼吸过程产生的CO2被释放到大气中,供植物再度利用,这是碳循环的最简单形式。CO2在大气中的存留时间或周转时间大约为50~200年。 植物被动物采食后,碳水化合物转入动物体内,经消化、合成,由动物的呼吸排出CO2。此外,动物排泄物和动、植物遗体中的碳,经微生物分解被返回大气中,供植物重新利用,这是碳循环的第二种形式。陆地生物群中含有大约5 500×108t的碳,海洋生物群中含有大约30×108t的碳。 全球储藏的矿物燃料中含有大约10×1012t的碳,人类通过燃烧煤、石油和天然气等释放出大量CO2,它们也可以被植物利用,加入生态系统的碳循环中。此外,在大气、土壤和海洋之间时刻都在进行着碳的交换,最终碳被沉积在深海中,进入更长时间尺度的循环。这些过程构成了碳循环的第三种形式。 应当指出,上述三种碳循环的形式是对全球碳循环过程的一种简化,这些形式的碳循环过程是同时进行,彼此联系的(图10-10)。 氮循环 氮是生态系统中的重要元素之一,因为氨基酸、蛋白质和核酸等生命物质主要由氮所组成。大气中氮气的体积含量为78%,占所有大气成分的首位,但由于氮属于不活泼元素,气态氮并不能直接被一般的绿色植物所利用。氮只有被转变成氨离子、亚硝酸离子和硝酸离子的形式,才能被植物吸收,这种转变称为硝化作用。能够完成这一转变的是一些特殊的微生物类群如固氮菌、蓝绿藻和根瘤菌等,即生物固氮;闪电、宇宙线辐射和火山活动,也能把气态氮转变成氨,即高能固氮;此外,随着石油工业的发展,工业固氮也成为开发自然界氮素的一种重要途径。 自然界中的氮处于不断的循环过程中。首先,进入生态系统的氮以氨或氨盐的形式被固定,经过硝化作用形成亚硝酸盐或硝酸盐,被绿色植物吸收并转化成为氨基酸,合成蛋白质;然后,食草动物利用植物蛋白质合成动物蛋白质;动物的排泄物和动植物残体经细菌的分解作用形成氨、CO2和水,排放到土壤中的氨又经细菌的硝化作用形成硝酸盐,被植物再次吸收、利用合成蛋白质。这是氮在生物群落和土壤之间的循环。由硝化作用形成的硝酸盐还可以被反硝化细菌还原,经反硝化作用生成游离的氮,直接返回到大气中,这是氮在生物群落和大气之间的循环。此外,硝酸盐还可能从土壤腐殖质中被淋溶,经过河流、湖泊,进入海洋生态系统。水体中的蓝绿藻也能将氮转化成氨基酸,参与氮的循环,并为水域生态系统所利用。至于火山岩的风化和火山活动等过程产生的氨同样进入氮循环,只是其数量较小(图10-11)。 当人类工业固氮之前,自然界中的硝化作用和反硝化作用大体处于平衡状态,随着工业固氮量的增加,这种平衡状态正在被改变。据估计,为了满足迅速增长的人口对粮食的需求,公元2000年的全球工业固氮量将可能超过108t,这将对全球氮循环产生怎样的影响,是值得研究的重要科学问题。

地球三大生态系统是

湿地与森林、海洋.

三大生态系统

森林、海洋、湿地被称为地球的三大生态系统,其中湿地是“地球之肾”、森林是“地球之肺”。一、森林生态系统。森林生态系统是森林生物与环境之间、森林生物之间相互作用,并产生能量转换和物质循环的统一体系。可分为天然林生态系统和人工林生态系统。与陆地生态系统相比有以下特征:生物种类丰富,层次结构较多,食物链较复杂,光合生产率较高,所以生物生产能力也较高。在陆地生态系统中具有调节气候、涵养水源、保持水土、防风固沙等方面的功能。二、湿地生态系统。湿地生态系统属于水域生态系统。其生物群落由水生和陆生种类组成,物质循环、能量流动和物种迁移与演变活跃,具有较高的生态多样性、物种多样性和生物生产力。三、海洋生态系统。海洋生态系统是海洋中由生物群落及其环境相互作用所构成的自然系统,由海洋生物群落和海洋环境两大部分组成,每一部分又包括有众多的要素。这些要素主要有6类:①自养生物,为生产者,主要是具有绿色素的能进行光合作用的植物,包括浮游藻类、底栖藻类和海洋种子植物;还有能进行光合作用的细菌。②异养生物,为消费者,包括各类海洋动物。③分解者,包括海洋细菌和海洋真菌。④有机碎屑物质,包括生物死亡后分解成的有机碎屑和陆地输入的有机碎屑等,以及大量溶解有机物和其聚集物。⑤参加物质循环的无机物质,如碳、氮、硫、磷、二氧化碳、水等。⑥水文物理状况,如温度、海流等。

发表评论

  • 人参与,0条评论